Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(1): 236-246, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37589816

RESUMO

Keratin-based nanofibers were fabricated using the electrospinning technique, and their potential as scaffolds for tissue engineering was investigated. Keratin, extracted from the human hair, was blended with poly(vinyl alcohol) (PVA) in an aqueous medium. Morphological characterizations of the fabricated PVA-keratin nanofiber (PK-NF) random and aligned scaffolds performed using a scanning electron microscope (SEM) revealed the formation of uniform and randomly oriented nanofibers with an interconnected three-dimensional network structure. The mean diameter of the nanofibers ranged from 100 to 250 nm. Functional groups and structural studies were done by infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. FTIR study suggested that PVA interacted with keratin by hydrogen bonding. Moreover, the in vitro cell culture study could suggest that PK-NF scaffolds were non-cytotoxic by supporting the growth of murine embryonic stem cells (ESCs), human keratinocytes (HaCaT), and dermal fibroblast (NHDF) cell lines. Further, the immunocytochemical characterization revealed the successful infiltration, adhesion, and growth of ESCs, HaCaT, and NHDF cells seeded on PK-NF scaffolds. However, there was no noteworthy difference observed concerning cell growth and viability irrespective of the random and aligned internal fibril arrangement of the PK-NF scaffolds. The infiltration and growth pattern of HaCaT and NHDF cells adjacent to each other in a 3D co-culture study mimicked that of epidermal and dermal skin cells and indeed underscored the potential of PK-NFs as a scaffold for skin tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Humanos , Camundongos , Animais , Engenharia Tecidual/métodos , Tecidos Suporte/química , Nanofibras/química , Queratinas Específicas do Cabelo , Pele , Proliferação de Células
2.
Chemistry ; 29(68): e202302339, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615829

RESUMO

The prevalence of anion-cation contacts in biomolecular recognition under aqueous conditions suggests that ionic interactions should dominate the binding of anions in solvents across both high and low polarities. Investigations of this idea using titrations in low polarity solvents are impaired by interferences from ion pairing that prevent a clear picture of binding. To address this limitation and test the impact of ion-ion interactions across multiple solvents, we quantified chloride binding to a cationic receptor after accounting for ion pairing. In these studies, we created a chelate receptor using aryl-triazole CH donors and a quinolinium unit that directs its cationic methyl inside the binding pocket. In low-polarity dichloromethane, the 1 : 1 complex (log K1 : 1 ~ 7.3) is more stable than neutral chelates, but fortuitously comparable to a preorganized macrocycle (log K1 : 1 ~ 6.9). Polar acetonitrile and DMSO diminish stabilities of the charged receptor (log K1 : 1 ~ 3.7 and 1.9) but surprisingly 100-fold more than the macrocycle. While both receptors lose stability by dielectric screening of electrostatic stability, the cationic receptor also pays additional costs of organization. Thus even though the charged receptor has stronger binding in apolar solvents, the uncharged receptor has more anion affinity in polar solvents.


Assuntos
Água , Solventes , Ânions/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...